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Introduction
The typical manufacturing process for biopharmaceuticals includes a 
cell culture process that generates the molecule of interest (upstream 
processing), a process to purify the molecule by removing process 
and product-related impurities (downstream processing), followed 
by formulation or lyophilization into the final drug product.1 Despite 
the complexity of biomanufacturing processes, a significant amount 
of research and development has been invested into real time process 
monitoring to facilitate continuous manufacturing of biologics2 and 
real time release (RTR) initiatives.3 A systematic approach is essential 
for successful development and implementation of technology 
infrastructure for real time process monitoring.4 A typical framework for 
implementation involves identification of critical process parameters 
(CPPs) that affect the critical quality attributes (CQAs) followed by 
deployment of appropriate analytical tools at critical control points 
(CCPs) of the unit operations involved in the manufacturing of the 
product.3,5 Analytical sensors capable of acquiring real time information 
from the process and cyber-physical systems for automated data 
piping, processing and/or visualization are key components of any 
monitoring platform.6,7

True real-time data collection is enabled by integration of analytical 
tools in an in-line fashion, where the sensors and probes are placed 
within bioprocess streams and data acquisition is performed without 
removing samples from the unit operation. Vibrational spectroscopy 
such as Raman and Fourier Transform Mid Infrared (Mid-IR), UV-Visible 
such as Variable Path length Slope (VPE) spectroscopy, capacitance 
and Multi Angle Light Scattering (MALS) are common in-line 
analytical techniques for monitoring of bioprocesses.4 Owing to the 
advancements in these technologies with bioprocess compatible 
probes, flow cells, integration scaffolds and improved analytical 
capabilities (such as superior sensitivities and response times), their 
utility in biomanufacturing for real time monitoring has gained 
significant momentum in recent years.2 Even though these physical 
sensors enable real time acquisition of process information related 
to CPPs and CQAs, it is also vital to establish a data management 
infrastructure for automated piping, analysis, and visualization 
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of results.8 The combination of process analytical sensors with an 
integrated data management platform (Figure 1) allows operators 
and scientists to monitor the results from the process in real time and 
make rapid process decisions enabling more robust control during 
manufacturing. Automated feedback and/or feedforward mechanisms 
can be used in some applications to control CPPs and achieve a target 
product profi le.

Here, we review some of the most commonly deployed in-line 
process analytical technology (PAT) tools for real time monitoring 
of CPPs and CQAs in biomanufacturing processes and provide our 
perspective for their use in clinical and commercial manufacturing of 
biopharmaceuticals. Several case studies are discussed to emphasize the 
aforementioned key aspects of a typical real time monitoring platform.

In-line Vibrational Spectroscopy

Raman 
Raman spectroscopy has grown in popularity since the publication 
of a seminal report by Abu-Absi et al. describing the use of Raman 
to monitor multiple upstream process parameters, such as glucose, 
lactate, and viable cell density, in an in-line fashion.9 Modern Raman 
spectrometers for bioprocess applications off er sterilizable probes or 
non-contact optics and often integrated multivariate data analysis 
(MVDA) systems to streamline integration into cell culture bioprocess 
systems. Typical Raman sample collection parameters yield a new 
measurement every 10 to 15 minutes, which is an appropriate timescale 
to capture cell culture process dynamics and is far more frequent than 
traditional offl  ine sampling, which is typically performed once or twice 
per day. 

The most common use for Raman spectroscopy in bioprocessing 
is to monitor glucose and lactate in the cell culture bioreactor. In a 
typical application, the Raman probe is sterilized and placed directly 
in contact with cell culture (Figure 2). Spectra from the Raman 
system are analyzed by multivariate techniques, such as partial 
least squares, resulting in a prediction of nutrient or metabolite 

concentration, which can be plotted and visualized in real time. 
In some applications, model predictions are linked with control 
systems to enable their use in regulating feed rates and, as a result, 
bioreactor nutrient concentrations.10 In addition to glucose, lactate, 
and cell density, recent studies have reported the use of Raman to 
predict amino acid concentration,11 protein titer,12 glycosylation 
site occupancy,13 and culture pH14 in real-time. Thus, a notable 
advantage of Raman is the ability to use Raman spectra to predict 
multiple upstream variables with a single technique. However, since 
the prediction of these compounds from Raman spectra requires a 
model, care must be taken to characterize the model to understand 
its limitations and avoid its potential failure points. 

Strategies to manage spectroscopic data are critical to a successful 
implementation of Raman technology. Traditionally, models have 
been developed on a product-by-product basis and managed using 
fi t-for-purpose PAT data management software. A recent trend in the 
literature has been a shift from cell line- and product-specifi c models to 
generic models that can be applied across multiple cell lines or multiple 
products.15,16 For example, Mehdizadeh et al., pooled calibration 
set data from multiple cell lines (seven total cell lines) and multiple 
scales of cultivation (1-L, 3-L, and 500-L) to generate PLS models for 
prediction of glucose, lactate, and viable cell density.16 The authors’ 
models predicted glucose, lactate, and viable cell density accurately 
for a new cell line not included in the calibration set. A generic model 
streamlines integration of Raman into multi-product facilities, but it 
can be challenging to build comprehensive calibration data sets to 
encompass potential sources of variation without compromising the 
accuracy of the generic model. Tulsyan et al. recently proposed an 
alternate approach using just-in-time learning as a generic framework 
for building models across diff erent modalities, cell lines, media types, 
and process conditions.17,18 The just-in-time approach stores diverse 
spectral data in a library and uses a machine learning algorithm to 
select the most relevant calibration data for any individual spectrum. 
Further advances in data processing and analysis should continue to 
provide improved accuracy and fl exibility of Raman systems.
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Figure 1. Technological Framework for Real Time 
Monitoring of Bioprocesses

Figure 2. Raman for real-time monitoring of glucose in a cell 
culture bioreactor. (a) Schematic representation, where the 

Raman probe is positioned in-line in contract with the cell culture 
matrix and data are sent to a system with multivariate data 

analysis software to enable real-time visualization. Optionally, 
feedback control loops can be included to regulate bioreactor 

nutrient content. (b) Sample data comparing traditional o�  ine 
sampling (blue dots) to Raman-based monitoring (black line). 
Real-time data collection and analysis enable more frequent 

measurements, allowing users to collect more information about 
the bioprocess.
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Mid-IR
The application of Mid-IR spectroscopy in bioprocess monitoring 
is not as well-established as Raman, likely due to the spectral 
interference from water present in the matrix and lack of instrumental 
confi guration for easy integration into unit operations. However, 
modern Mid-IR spectrometers are capable of automatically 
subtracting water absorbance as part of background correction during 
spectral acquisition, and a variety of fi ber optic probes, fl ow cells and 
attenuated total refl ectance sensors are currently available to facilitate 
their in-line signal acquisition.19 Mid-IR techniques are capable of 
capturing a single spectrum as quickly as ten seconds. This makes Mid-
IR highly attractive for unit operations where quality attributes change 
rapidly during the process, such as ultrafi ltration/diafi ltration (UF/DF) 
and Protein A purifi cation steps.20,21 The application of MVDA at the 
fi ngerprint regions corresponding to multiple analytes of interest in 
the process enables real time monitoring of multiple CPPs and CQAs 
simultaneously.22 For example, Mid-IR spectroscopic sensors were used 
to monitor multiple excipients and protein concentration variations 
during the UF/DF unit operation of biomanufacturing.20 In brief, the 
technology platform featured integration of Mid-IR probe sensors 
into a UF/DF process by direct in-line insertion and through custom-
made fl ow cells and acquired spectral signals were then shuttled 
automatically into a process monitoring software platform with 
pre-loaded MVDA models for real time monitoring of excipients and 
protein concentrations (Figure 3). This technology demonstrates the 
key features of a typical real time monitoring platform where results 
are generated almost instantly during the process (i.e., a measurement 
frequency of every 40 seconds), and in-built visualization capabilities 
enable rapid process decision making (Figure 3).20

In-Line UV-Vis Spectroscopy
UV-Vis is one of the most well-established methods for determining 
drug product concentration during downstream bioprocessing, 
typically by measuring absorbance at 280 nm.23 In-line UV-Vis fl ow 
cells have been a part of bioprocesses for decades. However, their 

dynamic range is limited by their use as single path length detectors, 
or if multiple path lengths are used, it is required to manually switch 
between them.24 Variable Pathlength Slope (VPE) instruments, 
which measure absorbance at multiple path lengths automatically 
at a fi xed wavelength to determine the concentration, have been 
an important breakthrough for UV-Vis analytical methods.25 These 
instruments have a dynamic range that is orders of magnitude greater 
than their traditional fi xed-path length counterparts; thus, protein 
samples from less than 1 mg/mL to over 200 mg/mL can be tested 
rapidly and accurately without dilution.26 To ensure accuracy of the 
measurements in VPE technologies, specifi c algorithms are built into 
the software to scan the path lengths and search for a starting path 
length at midpoint optical density (OD) where Beer’s law shows the 
best linearity. A signifi cant advantage of determining concentration 
by slope, as opposed to using a single or a few path lengths, is that this 
approach eliminates unwanted background eff ects. Thus, VPE is highly 
amenable to platforming, with minimal development required for 
individual biopharmaceuticals to achieve high accuracy in late-stage 
downstream processing. 

VPE technology in conjunction with a fl ow cell (In-line VPE) allows 
in-line integration to unit operations of the bioprocess and hence 
real time acquisition of UV signals. For example, in-line VPE tools 
enable real time monitoring of protein concentration in UF/DF unit 
operations. As shown in Figure 3, the integration of an In-line VPE 
tool at the retentate line during an UF/DF operation allows protein 
concentration measurements in real time. Protein concentration is 
part of the control strategy of a typical biomanufacturing process; 
e.g., diafi ltration and fi nal ultrafi ltration during UF/DF step are 
performed at pre-determined concentrations. Thus, a PAT platform 
such as In-line VPE makes a signifi cant contribution towards 
complete automation of this unit operation by providing real time 
protein concentration variations during the process while allowing 
feedback or feedforward control.

In-line VPE technology is not limited to quantifi cation of the drug 
product during downstream purifi cation unit operations. For example, 
Brestrich and coworkers recently demonstrated the utility of in-line 
VPE technology and MVDA for real time monitoring and quantitation 
of selective proteins with a broad dynamic range of concentrations 
during downstream unit operations.27 The authors claim monitoring 
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Figure 3. Mid-IR Sensor Platform for Real Time Monitoring of 
Protein and Excipient Concentrations at UF/DF Unit Operation. (a) 

Schematic representation, where sensor probes are positioned 
at the bulk solution and retentate line through a � ow cell 

respectively for real time acquisition of spectra. The spectra are 
then automatically fed into the process monitoring platform for 
real time visualization of results; (b) Photographic illustration of 

the set up.

Figure 4. Real time protein concentration monitoring using 
VPE technology in UF/DF unit operation. (a) A schematic 

representation of the setup, where VPE instrument is 
positioned in-line; (b) Real time variation of protein 

concentration during the process.)
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of downstream chromatography runs with highly loaded columns 
where product and product-related impurity peak concentrations 
varied between 30 g/L -80 g/L, and 4 g/L to 20 g/L respectively.27 In 
summary, VPE technology with sufficient precision and dynamic range 
can now be used in many downstream operations with real time 
decision making capability.3 It is highly likely this technology will be 
a critical component of the control strategy for bioprocessing in the 
years to come.

Future Perspective
Intensified and continuous biomanufacturing platforms1,28 with real 
time process monitoring capabilities are attractive developments to 
enhance productivity, reduce cost of goods and support a growing 
pipeline of therapeutic modalities. While there are well-established 
PAT tools for real time measurements in bioprocesses, several unmet 
needs for certain parameters and quality attributes such as host cell 
proteins, bioburden, and residual DNA still exist. This could be due to 
the lack of in-line or on-line technologies, and inherent analytical assay 
challenges such as sample pretreatment needs. On-line PAT tools, 
where a sample is taken out from the process stream in an automated 
fashion for analysis, can be employed for the types of analysis which 
involve significant sample preparation and pretreatment before 
analysis. In addition to applications in real time process monitoring, 
as adoption of PAT technologies becomes more widespread in the 
biopharmaceutical industry, they are likely to be increasingly used in 
adaptive process control using automated feedback or feedforward 
loops to improve process robustness. Finally, real time analytics not 
only enables precise monitoring and control of the process but also 
leads to collection of enormous amounts of data that can then be used 
for more holistic understanding of the manufacturing process using 
advanced data interrogation techniques.29
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